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E&M and Math Formulae Review

Appendix E of Conte & MacKay contains some other useful stuff.

Speed of light in vacuum: ¢ = 299792458 m/s ~ 30 cm/ns
Fields (See Chapter 9 of Conte & MacKay):
D =¢E ézﬂﬁ € = €r€p W= Hrto

For free space (vacuum): €, = p, =1

po =41 x 1077 Tm/A, € = ~8.85 x 10712 C/V/m?

poc?

Maxwell’s Equations:

Gauss’ Laws Stoke’s Laws

V.-D=p V-B=0 VxE=_2B VxH=J+9

[loy D-dS = [[[, paV |[[,, B-dS=0|§ E-dl =% [[B-dS|§ H -dl = [[ J-dS+ & [[ D-dS

Steady-state boundary conditions between two media:

(By—By)-a=0
(EQ — El) xn=~0
(HQ - ﬁl) XN =— _;urfacc
Fields in terms of potentials:
S 0A
E=-Vb—- —
ot
B=VxA
Coulomb’s law:
= q192
F =
4egr?
Biot-Savart law: .
dB — /LLI dl x r
4 r?

Lorentz force:

Energy density:

Momentum density:

Poynting vector (energy flow):
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Some trig identities and other useful stuff:

W —=cosz+isinx

e

) et _ p—ix
sinx = -
21

elil) +€7'LI

cosy = ———
2

sin(f + ¢) = sin 6 cos ¢ + cos O sin ¢

cos(f + ¢) = cosf cos ¢ — sin O sin ¢
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e” = coshz + sinh x

—e
nha —
sinh x 5
CE+ —T
coshx = %

sinh(0+¢) = sinh 6 cosh ¢+ cosh 6 sinh ¢

cosh(f+¢) = cosh 6 cosh ¢+sinh 6 sinh ¢

cos® 0 = 1(1 + cos 26)
sin? § = $(1 — cos26)
0 1 —cosf
sin - = +4/ ——
2 2
0 1+ cosf
RN Sl
cos 5 5
tang _sinf  1—cosf _ 4 /1—cosf
2 1+4cosf  sinf 1+ cosf
C
sinA  sinB  sinC
a b c
? =a®+b%> —2abcosC b a
a+b B tan (MTB)
a—b tan (ﬂ)
2 A c B
/ dzr -1
=tan "z
1422
1 i 2
e 22dx =
V2ro /_Oo
1 /Oo 9 — =22 2
z%e 22dx =0
270 J_ o
Fourier transforms: -
fo)= [ e
1 > —iwt ¢
FO) = [ e fw)dw
27 J_
Poisson sum formula:
i 1 > sm2mt
ot — = = U
s 2
Parseval’s theorem:
ne) = [ f0gte -1t ) = Fw)i)



Characteristic Equations of Symplectic Matrices

Given an m xm matrix M, we can define a characteristic polynomial by
PO =M—-1I)\ = ZA N, (2.1)

so that the characteristic equation for the eigenvalues JA; is

P =JJ(rx=x)=o0. (2.2)
j=1
Clearly

Ay = = M| = H Ajs (2.3)
where A\, A2, ..., Ay, are the m eigenvalues of M. Expanding the product in Eq. (2.2), it is easy to

show that
Al = —tr(M) = — Zij’ and Am = (_1)m' (25)

j=1

It should also be noted that the coefficients A; are all invariants under similarity transformations of
the type M — WMW ! for any nonsingular m xm matrix W.

If we now restrict ourselves to nonsingular matrices, i. e. [M| # 0, then M ! will exist. Note
that none of the eigenvalues of M will be zero in this case. Another characteristic polynomial for
M~! is defined by

Qu) =M —Tu[ = > B/, (2.6)
=0

with m eigenvalues p; found from the equation Q(p;) = 0. Dividing P(A\) by | — AM| produces

1

mP(A) =M -I =0\, (2.7)

so the eigenvalues of the M~! are simply the inverse of the eigenvalues of the M: p,; = AL

j
Combining Egs. (2.1, 2.6, and 2.7) yields

S AN =[=M|D BN, (2.8)
j=0 j=0
which must hold for all values of A\, so we obtain the condition

Aj = | - M| B j- (2'9)
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2.1 Symplectic restriction

Now if M € Sp(2n,R;S) is a symplectic matrix with m = 2n, then | — M| = (—1)?"|M]| = 1,
and we get
A; = Bp_j. (2.10)
Since M~! = STMTS and STS =1, we find
Q(u) = M™! —Lu| = [STS| M ™" — Iy| = [S(STM'S ~ I)S™| = M —Tp|. (2.11)

But MT has the same eigenvalues as M, so we must have Q(u) = P(u) for a symplectic matrix.
This means that the reciprocal of an eigenvalue of a symplectic matrix is also an eigenvalue; they
come in pairs: A; and 1/A;. Additionally, we should note that since M is real, all the A; are real
and therefore if A; is an eigenvalue of M, then so is its complex conjugate A}.
Therefore the characteristic polynomial for a symplectic matrix has the symmetry with 4; =

A2n7j7 SO

P = 14+ AN F AN+ Ay N T AN A, N T R AT AN N (2,12)
or slightly more succinctly

n—1

P(X) = A"+ ) Aj(N 4 X270, (2.13)

Jj=0

Dividing the characteristic equation by A™ (since none of the eigenvalues can be zero) gives

= A, +ZA ( 1 >=0. (2.14)

Another way to arrive at the symmetry of the A; is to expand P()) in terms of the eigenvalues

in symbolic terms even though we may not have solved for them. Let us order the m eigenvalues of
M so that the second half are the respective reciprocals of the first n eigenvalues:

1
J

Now we can write -
ZA No=TT =) (2.16)
j=1

To simplify things, let us write the coeflicients for the case 2n = m = 6:

AO = det(M) =1= A67 (217&)

2 3 4 5 6 6
=D D D D A=) N, (2.17h)
=1

i=1 j=i+1 k=j+1 l=k+1 m=I+1

3 4 5 6 5 6
=Ar=)"3"0 ) Y AN =)0 > A, (2.17c)

i=1 j=i+1 k=j+1 I=k+1 i=1 j=i+1

4 5 6
=0T A (2.17d)

i=1 j=i+1 k=j5+1
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The eigenvalues of the matrix K =M + M™! are
ki =X+ A (2.18)

and the characteristic polynomial of K can be written as

2

R(r) =T —1s| =Y Cjr/ = | [[(s—5s) | - (2.19)
0

= j=1
So we must be able to write R(k) as
n n 2 n n 2n A
Z Cilii = <Z Dilii> = Z Z DiDjFLH_j = Z Z DjDi_j Iii. (220)
i=0 i=0 i=0 j=0 i=0 \ j=0

The characteristic equation for K is the square of an n*® order polynomial, and we need only factor
R(k) and solve for the n roots of

[ —r)=o. (2.21)
The eigenvalues of M will then be

Kj Kj

N=2+ (7) —1, and Ay =2 - (2)-1 (2.22)

For n = 3, the D; may be obtained from the C;

Do = /o = VI, (2.23)
D, = 2%10 _ _t\/r(g, (2.24)
Dy = %ﬁ, (2.25)
Dy = @%%DQ. (2.26)

Expanding and comparing the right-hand products of Egs. (2.16 and 2.19) with k; = A; + )\j_l we
find the coefficients of R(x) in terms of the coefficients in the characteristic equation for M:

Co = As + 245, (2.27)
Cy = A, —3, (2.27)
Co = Ay, (2.27)
Cs = 1. (2.27)
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2.2 Solution of cubic equation
From §3.8.2 of Abramowitz and Stegun we have the polynomial
3 2 _
22+ asz”+a1z+ ag =0.

To find the three solutions they give the following algorithm:

2

4
(J—3 9’
aias — 3ag ag
T = — T ar
6 27

1/3
si=(r+ Ve +?)

(r= V)",

S92 =
a
2’1:514—52—?,

3
22=—51;52—%+i§<sl—52>,
Z:_m_@_i_(s — 59)
3 2 3 g btk

Note that if ¢ + r2 > 0, we should take the real cube roots in the equations for s; and s,. I find
that the algorithm has problems in Octave if ¢ 4+ 2 < 0.
The cubic equation above could be thought of as characteristic equation for the diagonal 3 x 3

matrix
Z1 O 0
M = 0 Z2 0 y
0 0 z3
1. e.,

23— (—a2)2® + a1z — (—ag) = 0.

In this case we must have the three coefficients

—ag = |M| = 212223,

—ag =tr(M) = 21 + 22 + 23,

a1 = 2122 + 2223 + 2321,
which are invariant under similarity transformations
M = WMW !
where W is any complex 3 x 3 matrix with nonzero determinant.
Let’s start with the equation:

23 —b222+b12—b0 =0.



Characteristic Equations of Symplectic Matrices
First make the subsitution z = z — k and find k to eliminate the z2 term:
0= (2% — 3ka? + 3k%x — k%) — bo(a? — 2kx + k?) + by (2 — k) — bo.

0 =23 — (3k + bo)x? + (3k? + 2kby + by)x — (K + bok? + byk + bp).

The equation then becomes

0 = 2% + (3k% + 2kby + b1)x — (k3 + bok? + b1k + by).

b3 2b3 b3 b3 bibg
0 =23 2 _ 72 4 2422 7,
P (Z-Than)o- (-4 2 -2 m)

0=a>+ciz+ co, Wwhere

b2
c1 =by — 3 and

23 byb
= (222 ),
@ ( 27 3 0)

Now make the substitution x =y — @, ie.z=y— c—l + b2 to transform the equation to

& 2
0=1y®— 32 3L -a
v’ yy + 9y2 27 3 3y
e
0=y>— L
y 27 P+ o
3
0= (y*)?2+co(y?) 2—17, a quadratic equation in y3.
3
3 Co Co (651
o5
Y 2 2) T
C1 b1 b%
9= 5 =75
3 3 9
e (b3 B
2 6 27

Vi =1y =r+ 124 ¢ = pjellitnin)

for je{1,2}, 6; €[0,2r), and n€{0,1,2}

It seems as though we can just take Y, to calculate

n=\r+ V4¢3, g =y e¥/3 and yz =y 43

q 3b1—b§ b2
Zj=yj— ——k=y; + +2
=Y Yj b 3y, 3

With some tests, it seems that Y} or Y_ both generate the same three roots for n € {0,1,2}. This
algorithm works with complex coefficients as well.
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References for Chapter 2

[1] Milton Abramowitz and Irene A. Stegun, Handbook of Mathematical Functions with Formulas,
Graphs, and Mathematical Tables, Dover (1972).

[2] Richard Talman, Geometric Mechanics, John Wiley and Sons, New York (2000).

[3] Robert A. Horn and Charles R. Johnson, Matriz Analysis, Cambridge (1985).



Matrix Elements: Synchrobetatron Coupling

For a charged particle of charge ¢ in an external electromagnetic field, we may write the rela-

tivistic Hamiltonian as

H(z, Py, y, Py, 2z, Pyt) =U = \/(ﬁ - /f)z + m2ct + q®, (3.1)

with vector potential /_f, and electric potential ®, canonical momentum P= P+ q/_l', and total energy
U. Here the kinetic momentum p’' = ygmc. In the usual cylindrical coordinates of accelerator physics
with radius of curvature p, the Hamiltonian may be written as

H(%Pmyapya&Ps;f) =U

Ps_qu

2
2¢2 d. (3.2
1+x/p) +m2c? +q®. (3.2)

= C\/(Pw —qAz)? + (Py — qAy)* + (

Recalling that a canonical transformation from variables (¢, p) to variables (C,j, ﬁ) preserves the

Poincaré-Cartan integral invariant
p-dj—Hdt =P -dQ — K dt, (3.3)

we can interchange one canonical pair (g;, p;) with the time and energy pair (¢, —H) by writing the

invariant as
> pidg; + (—H)dt | — (—p;)da;. (3.4)
]
This transformation gives the new Hamiltonian
H(‘rvpzayvpyvta _U7 S) = _PS
= _qu

-(1+2) \/ (£= q‘b)Q —(me)? — (P — g2 — (P, — A 2. (35)

c

If there are no electrostatic fields then we may write ® = 0; the fields in rf cavities may be obtained
from the time derivative of A. Ignoring solenoids for now, with only transverse magnetic guide fields
and the longitudinal electric fields of the cavities, then it is sufficient to have only Ay, so

Ay =0, A,=0, and ®=0. (3.6)

For dipoles, quadrupoles and cavities a vector potential of the form

quzq(lJr%) (A-5)

_ Psy Py o
= x ) ( ye) + ..
-i-ﬂ i §(s — jL) cos(wytt + o) (3.7)
erj:_oo rf 0)- .
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is sufficient. Here the circumference is L, and the magnetic guide field parameter is

1 q (83)
K=—+- L (22) 3.8

and psy is the momentum of the synchronous design particle. The effective rf phase as the syn-
chronous particle passes the cavities is ¢g, to give a net energy gain per turn of [¢V cos(¢g)]. In
Eq. (3.7) the effect of all rf cavities has been lumped at the location s = 0 in the ring.

The time coordinate may be broken up into the time for the synchronous particle to arrive at
the location s plus a deviation At for the particular particle’s arrival time:

2mh
t =ty (s) + At(s) = th s+ At = %

+ At (3.9)

If the beam is held at constant energy, then we may make a canonical transformation of the time
coordinate At to rf phase ¢ given by
© = wrfAt. (3.10)

If acceleration is assumed to be adiabatically slow, so that w,s changes very slowly, and the magnetic
guide fields track the momentum of the synchronous particle, keeping the synchronous particle on a
fixed trajectory, we can allow for an adiabatic energy ramp according to

qV sin ¢g
— 5

Usy:U0+ T P

(3.11)

where the energy gain per turn [¢V sin ¢g] is much less than the total energy Us. In this case it
might not unreasonable to use ¢ as the longitudinal coordinate, so long as we are prepared to allow
for adiabatic damping of the phase space areas. To convert the time coordinate into an rf phase
angle relative to the phase of the synchronous particle, we can use the generating function

Vsi
FQ(Iapzvta W7S) =TPx + |:erW_ <UO + qS‘LﬂS>:| t

27h gVrhsingg ,

_ 2w 3.12
7T Ws+ oz o (3.12)

to find a new canonical momentum W corresponding to the phase coordinate. This is what was
used to arrive at Eq. 7.61 of Ref. [1].*
Before proceeding down this path it will behoove us to examine the effect of ramping the energy.
The deviation in energy of another particle of energy U from the synchronous particle may be defined
as
AU =U — Ugy. (3.13)

For the synchronous particle the phase of the rf cavity should be
toy
¢sy = ¢O + / we dt
0

ty o1h
= ¢o +/0 —ﬁLﬂc dtsy (3.14)

* In writing § 7.6 of Ref. [1], I was following the formalism of Suzuki[2].
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With changing energy and the velocity dependence of w,¢, calculation of this integral becomes a
problem and ¢ does not appear to be such an attractive candidate for a canonical coordinate.
This is why Chris Iselin chose to take { = —cAt as the longitudinal coordinate variable in the
MAD program[3]. Of course there are other parameters which are not necessarily constants in
real accelerators. It is quite common to vary the radial position of the closed orbit, as well as
the synchronous phase of the rf — particularly during the phase jump at transition crossing. Pulsed
quadrupoles are frequently used to cause a rapid change in the transition energy at transition during
acceleration.
If we consider a ramp with a constant increase of energy per turn

Uy =Us+ Rs  with

14
R= qfsinqﬁo, (3.15)

then the time evolution as a function of path length of the synchronous particles is given by

S ds

tsy(s) = . E

|
c\m
v —
|
VR
S
+13
IR
CIJ\
N——

mc? Cosil(UomTCZRs) 5
:—/ tan” 6 db, 7 = cosf

+cos™! <%> —cos™! <m702>}
0 S 0
me? 1 (1 1 (1
_ _ It i I 3.16
2R {67 Bt + cos (”Y) o (’Yo)] ( )

Provided that the ramping is sufficiently slow, then acceleration may be treated adiabatically.

At least in the adiabatic case, then we can find the new canonical coordinate and Hamiltonian
from Eq. (3.12):

_O0Fy qV sin ¢g
-U = 9t = wW — (UO+7L S (3.17a)
p= % = wrft — 2mh s (3.17b)
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0F, qV sin ¢g 2mh 2mhqV sin ¢g
- l——s+——5—s5

s L L’ o L2
qV singg | 2mh 2mh 2mhqV sin ¢g

=1 At| — —s4+—— =

L erLSJF 7R R
__quinqb(Ji_@S
N L w¢ L

Vs

__Vsingo p s (3.17¢)

L Wrf of

where we have written Ay = L/27h as a constant effective rf wavelength corrected for the velocity.*

Ignoring the vertical coordinate and momentum the new Hamiltonian is

OFy
H ) 7W7 =H a
1(#,Pa, 0, W) = H+ —-
_ Dsy psyK 2 qV — . S
2ot B Y stmin o (sor et )

z\ [(Usy —wigW)? —m2et 1/2 qVsingy ¢ s
—|\1+= 2 — P - T T 3=

S, SK V = .
:%x—i—%ﬁ—i—i— Zé(s—yL)cos(%—i—s@—F%)
rf . rf

j=—o00

1/2 :
_<1+£> [pfy—ZwrstyW+w—r2fW2_p2] / _@Vsindo ¢ s
p) " c

c? *

T
— Ds 1—|——>
y( p

qVsingg S

2 2
1 witUsy w “gff - 1 4Uzy“irf w2 — 1
S

K V= _ s
>~ psy —1+§I2+q— Z 6(s —jL) COS(¢0+<P+—*)

erpsy j=—oo rf
T wrtUsg miw? 1 p? V sin s
() [y e 18] v e )
p Dy € 2psy 2 Psy Lpsy Wrf of

K Voo , s
~ Doy —1—&-3:624—(1— Z 6(s—jL)cos<¢0+cp+—*)

WrfPsy . rf
X
¥ (1 n —)
p

j=—00
The true rf wavelength is actually 2,y = L/27whf and is a function of the momentum of the

1w 1 (W2 1 ()’
= —t o=\ t5 |\ —
Ae Psy 225 Dsy 2 \psy

*

particle, whereas A} is a constant depending only on the design circumference and harmonic number.
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_aVsingo o s (3.18)

This is essentially the same as Eq. (7.61) of Ref. [1] where the longitudinal variables are

¢ =w At, and (3.19a)
W = —AU, (3.19b)
Wrf

L is the circumference, and for magnets with transverse fields and no horizontal-vertical coupling

1 q (0B
K=+ (m)o' (3.20)

If we want to calculate matrices for the basic magnetic elements, i. e., normal quads and dipoles,
then the summation drops out, since §(s — jL) = 0 and V = 0 away from the rf cavities. Then

keeping only terms to second order in the canonical variables we have

psK 2 pi
Hy ~ —p,
1 Ps + 9 x° + 2.
+ Usywrf _ @ W + mzwff W2 + Usywrf Wa
DPsy c? L 2p§y ppsy62
2 2,2
psyK 2 2 M~W.¢ 2 Usyw]ff
~ —pgy + x4+ + ——— W, 3.21
) 2py  2p3, PPy C (3:21)

since the two terms in the coefficient of W cancel. We may rescale the Hamiltonian by 1/p, getting

K 1 1
H1,5:—1+—x2+—wz2+ 3
2 2 VA

1
wj + P (3.22)

with the new canonical momenta

=Pz and (3.23a)
Dsy

W AU
Dsy wrfpsy.

Bymc®
ymc? Ap

Wy

We

2mh
Zmhie pgy

A
= -1, =L (3.23b)

Dsy

In this case with ¢ and wy as canonically conjugate the longitudinal emittance would have units of
length (meters), just like the horizontal and vertical planes. (Of course this should be obvious since all
three emittances would come from the common Hamiltonian H; 5.) In the paraxial approximation,

we obviously have w, ~ z'.
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3.1 Quadrupole Matrix

For a normal quadrupole the last term in Eq. (3.22) vanishes, and we have
1 1 9

k
Hyiso~ =14 22 + —w,? + —— 3 W,
2 2 VA

Psy \ 0T ),

Evaluating for the equations of motion, produces

with

dz _ OHys w
ds ~ Ow,  °
dwm - _8H1,5 — _kx
ds oxr
ng 6H1,5 1
_— = = 2 wd)
dS 8w¢ '}/szf
dUJ¢ - _8H1,5 -0
ds do
So the infinitesimal matrix of integration should look like
1 ds 0 0
kds 1 0 0
1+Gds=| " 5 | _as
V2
0 0 0 1

1
0 7r 0 0
Gds = “O/E 8 8 O | Vkds
VAV
0 0 O 0
Integration leads to the quadrupole transfer matrix
cos(Vkl) ﬁ sin(vkl) 0 0
M — —VEsin(vVEl)  cos(vVEL) 0 0
= !
0 0 L S
0 0 0 1

3.2 Drift Matrix

For a drift k = 0 and Eq. (3.27) becomes

1 ds 0 0
0 1 0 0
I —+ G dS = 0 O 1 ds )
'72/1;}2
0 0 O 1
and leads to the full matrix
1 1 0 0
01 0 0
M=1¢0 01 L,
’YZ/T:fz
0 0 O 1

(3.24)

(3.25)

(3.26a)

(3.26D)

(3.26¢)

(3.26d)

(3.27)

(3.28)

(3.29)

(3.30)

(3.31)
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3.3 Sector Bend Matrix

1 1 p (0B
K=—+4+=—+ (=
727 B <5w>o

1-n
=
where n is the field index.
1—n 1 1 1
His~-1+ 22+ w4+ ——— wi + — wyr,
2p? 2 022 0
dx 6H1,5
_— = = w:E
ds Owy
dwm 6H1,5 1—n 1
= - =T — —w
ds Ox P> oy ¢
d_<p _ 0H15 1 s+ 1 -
ds dwg 20 Y
dwy _ OHis _
ds dy
1 ds 0 0
ey —1;2” ds 1 0 —p/%*f ds
+ Gads = i
pTlrfds 0 1 Z;f ds
0 0 0 1
0 p 0 0
1—n 1
Y e N -
p e 00 72%}2
0 0 0 0
: —(1—=n) ( 0 | 0 —/{gf
0 —(1-=mn) O 0
G*=—
P> 0 /{;if 0 0
0 0 0
0 —p(l=n) 0 0
(1*71)2 1—n
G3 = i P 0 0 A
3 1—n
A 0 0 =k
0 0 0 0
(1—n)? 0o o Lme
rf
1 0 (1-n)2 0 0 1-n_,
Gi= — = — G-,
4 (1—n) 2
P 0 i L0 0 p
0 0 0 0

15

(3.32)

(3.33)

(3.34a)
(3.34D)

(3.34a)

(3.34a)

(3.35)

(3.36a)

(3.36D)

(3.36¢)

(3.36d)
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sin|[vI—nb 1—cos|v/I—nb
cos [\/1 — n@} ey [1_n ] 0 p(1=cos[VIZn0]) (1721)1& D
Vi—-n sin[\/ﬁe] sin[\/ﬁe]
f COS [\/ 1— TL@:I 0 \/17_7’”2:{ (337)
sin[\/l—ne] p(l—cos[\/l—nH]) 1 p 0 \/l—nG—sin[\/l—nH]
T V/Ioniy o (I—n)1; T2 (1—n)—3/2
0 0 0 1

References for Chapter 3

[1] Mario Conte and William W. MacKay, An Introduction to the Physics of Particle Accelerators,
World Sci., Singapore (2008).

[2] Toshio Suzuki, “Hamiltonian Formulation for Synchrotron Oscillations and Sacherer’s Integral
Equation”, Particle Accelerators, 12, 237 (1982).

[3] F. C. Iselin, “Lie Transformations and Transport Equations for Combined-Function Dipoles”,
Particle Accelerators, 17, 143 (1985).

[4] Milton Abramowitz and Irene Stegun, Handbook of Mathematical Functions, Dover Pub.,
New York (1970).
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Comments on Canonical Coordinates

4.1 Nonparaxial considerations in the transverse plane

The paraxial approximation is generally obtained by dividing the Hamiltonian by the design
momentum py and making a small angle approximation. In the scale transformation obtained by
dividing H by p, the real transverse momenta conjugate to the x and y coordinates are

sp =22 = sinf, (4.1a)
Do

Sy = By _ siné,, (4.1b)
Do

where 6, and 6, are the projections of the trajectory angle with respect to the design orbit. As
stated earlier, the approximation is made for small angles by

sin Gj ~ tan Gj

. Suppose we would still like to transform the transverse momenta to z’ and 3’ without the paraxial
approximation. What canonical coordinates could we expect to find. We need to construct a new
F, function for the canonical transformation. Remember that Fa(x,2’,y,%'; s) is a function of old
coordinates and new momenta with the partial derivatives:

% = i—z =2'\/1— a2 —y? (4.2a)
38_22 _ 2_2 SNy — (4.2b)
‘213 o (4.2¢)
‘253 4 (4.2d)

From the first pair of equations we find a good choice for Fs to be

F2(55755/7y;y/§5) = (‘Tml + yy,) V 1- 3312 - yl . (43)

Evaluating the second pair of equations (4.2a&Db) gives:

0@\ 1 1—242 — y/2 —z'y’ T
(Qy) - /71 — 2 _ y/2 ( —x’y’ 1— 22— 2y/2 y : (4'4)

Inverting the matrix and solving for the old coordinates yields

T B ——5 /2i 1— .%'/2 _ 2y/2 :c’y’ Qe
( >—\/1 € Y D( 1ot 1—21:’2—3/2 ) (4.5)

) ry dy
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where the determinant
D= (1-22"7 —4?)(1 — 2" —2y?) — 2%y
=[1- @ +y?)I - 2" +y?)). (4.6)
So the old coordinates in terms of the new ones must be replaced by

(12" —2y")q. +2'y'q
= 2 72\1/2 o (4.72)
(1 =2 —y?)1/2[1 = 2(z” + y?)]

I’y’qx + (1 _ 293/2 _ y/2)qy

= ) 4.7b
Yy (1 — 22— y2)I/2[1 - 2(22 + y2)] (4.7b)
This will create one bloody-awful mess, won’t it?
If we expand ¢, and g, in power series to 34 order we obtain
gz =2— %327 +y?)z—2yy+-- (4.8a)
a=y—32@*+3y%)y—2yz+- - (4.8Db)

So if we are only interested in terms up to second order, the paraxial approximation will probably
work, but if we want to keep terms to third order or higher, then we should use the canonical
momenta p,/po and p,/po rather than z’ and y'.

4.2 Longitudinal coordinate variations

There are a several different combinations for the longintudinal canonical variables, for exam-

ple:
(Z, ﬁ_:)v (4.98.)
(—cAt, 2u), (4.9b)
((bv W)7 (490)
(¢, we). (4.9d)

The last two pairs Egs. (4.9c and d) were explained in the previous chapter Egs. (3.19 and 3.23b).
Differentiating the equation
U? = p*c® + m?c?, (4.10a)
leads to the relation
du = Bedp, (4.10Db)
or on converting to fractional deviations
d 1d 1 d
22— (4.11)
Po B PoC B2 Uy

Conversion from the pair Eq. (4.9a) to pair Eq. (4.9b) used in the MAD? program may be accom-

plished by
2 = (el mt)\ _ (~PocdD) _ (B 0 ) (_cm)
(%>_( Po >_(ﬁo‘1%)_<o Byl ﬁ_u (4.12)

The usual definition of dispersion gives the particular solution to the inhomogeneous horizontal Hill’s

A~

&

equation (Eq. 5.77 of Ref. 2) must be modified by a factor of 5 to agree with the value calculated
by MAD.
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Example of Coupled Bunch Instability

During one ramp of polarized protons in Yellow ring of RHIC, only one of the two 28 MHz
cavities for acceleration was being powered. The tuner for the other cavity was detuned to a
fixed frequency away from the proper frequency. As the beam was accelerated from 24.3 GeV
at injection to 100 GeV at storage the revolution frequency shifts from fyr,;, = 28.1297 MHz to
fre,p = 28.1494 MHz. The normal harmonic number for the 28 MHz cavities is h = 360. At one
point in the ramp, the 358" harmonic of the revolution frequency crossed the resonant frequency of
the unpowered cavity initiating the multibunch instability shown in Fig. (5.1).

start cing # plots delta

D-ifg’z E :J e | Esomn

=T 1
0 10
m hucket center

# Trig. msec

gger

Figure. 5.1 Coupled bunch instability in the RHIC Yellow ring during acceleration of polarized
protons. The 56 traces are the 55 bunches (plus one empty bucket) taken on one turn during
acceleration. The populate every sixth rf bucket starting from bucket 1 up to bucket 331. There is
a gap of 5 bunches (buckets 332-360) to leave room for the rise time of the abort kickers.

The bunched beam drives TMjy1g oscillations in the unpowered cavity. Each bunch will see the
wake of previous bunches and gain (loose) a little energy from (to) the cavity depending on the
relative phase of the wake oscillation when the bunch crosses the gap. As a result there is a slight
beating of frequencies of the two cavities as indicated in Fig. (5.2).
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Figure. 5.2 Conceptual beating of the frequencies of the two cavities: [sin(2mhz)sin(2wh’z)]. Here
the harmonic numbers h = 20 [sin(2wha)] and ' = 18 [0.5sin(27wh’'z)] were used rather than 360
and 358, so that the individual cycles could be seen for the individual cavities.
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Figure. 5.3 This shows the 55 bunches later in the acceleration ramp after the oscillations have
Landau damped.



